Any Finite Group Acts Freely and Homologically Trivially on a Product of Spheres

نویسنده

  • JAMES F. DAVIS
چکیده

The main theorem states that if K is a finite CW-complex with finite fundamental group G and universal cover homotopy equivalent to a product of spheres X, then G acts smoothly and freely on X×Sn for any n greater than or equal to the dimension of X. If the G-action on the universal cover of K is homologically trivial, then so is the action on X × Sn. Ünlü and Yalçın recently showed that any finite group acts freely, cellularly, and homologicially trivially on a finite CW-complex which has the homotopy type of a product of spheres. Thus every finite group acts smoothly, freely, and homologically trivially on a product of spheres.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constructing Homologically Trivial Actions on Products of Spheres

We prove that if a finite group G has a representation with fixity f , then it acts freely and homologically trivially on a finite CW-complex homotopy equivalent to a product of f + 1 spheres. This shows, in particular, that every finite group acts freely and homologically trivially on some finite CW-complex homotopy equivalent to a product of spheres.

متن کامل

Group actions on homology spheres

This can be stated in a more symmetric manner. Let r be any positive integer not equal to 3. Then n acts freely and homologically trivially on Z r i ff n acts freely and homologically trivially on SL In fact, there is a one-to-one correspondence between such actions on U and such actions on S r. (The classification of such actions is discussed in w In addition the actions constructed have the p...

متن کامل

Most Rank Two Finite Groups Act Freely on a Homotopy Product of Two Spheres

A classic result of Swan states that a finite group G acts freely on a finite homotopy sphere if and only if every abelian subgroup of G is cyclic. Following this result, Benson and Carlson conjectured that a finite group G acts freely on a finite complex with the homotopy type of n spheres if the rank of G is less than or equal to n. Recently, Adem and Smith have shown that every rank two fini...

متن کامل

Qd(p)-FREE RANK TWO FINITE GROUPS ACT FREELY ON A HOMOTOPY PRODUCT OF TWO SPHERES

A classic result of Swan states that a finite group G acts freely on a finite homotopy sphere if and only if every abelian subgroup of G is cyclic. Following this result, Benson and Carlson conjectured that a finite group G acts freely on a finite complex with the homotopy type of n spheres if the rank of G is less than or equal to n. Recently, Adem and Smith have shown that every rank two fini...

متن کامل

Group Actions and Group Extensions

In this paper we study finite group extensions represented by special cohomology classes. As an application, we obtain some restrictions on finite groups which can act freely on a product of spheres or on a product of real projective spaces. In particular, we prove that if (Z/p)r acts freely on (S1)k , then r ≤ k.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016