Any Finite Group Acts Freely and Homologically Trivially on a Product of Spheres
نویسنده
چکیده
The main theorem states that if K is a finite CW-complex with finite fundamental group G and universal cover homotopy equivalent to a product of spheres X, then G acts smoothly and freely on X×Sn for any n greater than or equal to the dimension of X. If the G-action on the universal cover of K is homologically trivial, then so is the action on X × Sn. Ünlü and Yalçın recently showed that any finite group acts freely, cellularly, and homologicially trivially on a finite CW-complex which has the homotopy type of a product of spheres. Thus every finite group acts smoothly, freely, and homologically trivially on a product of spheres.
منابع مشابه
Constructing Homologically Trivial Actions on Products of Spheres
We prove that if a finite group G has a representation with fixity f , then it acts freely and homologically trivially on a finite CW-complex homotopy equivalent to a product of f + 1 spheres. This shows, in particular, that every finite group acts freely and homologically trivially on some finite CW-complex homotopy equivalent to a product of spheres.
متن کاملGroup actions on homology spheres
This can be stated in a more symmetric manner. Let r be any positive integer not equal to 3. Then n acts freely and homologically trivially on Z r i ff n acts freely and homologically trivially on SL In fact, there is a one-to-one correspondence between such actions on U and such actions on S r. (The classification of such actions is discussed in w In addition the actions constructed have the p...
متن کاملMost Rank Two Finite Groups Act Freely on a Homotopy Product of Two Spheres
A classic result of Swan states that a finite group G acts freely on a finite homotopy sphere if and only if every abelian subgroup of G is cyclic. Following this result, Benson and Carlson conjectured that a finite group G acts freely on a finite complex with the homotopy type of n spheres if the rank of G is less than or equal to n. Recently, Adem and Smith have shown that every rank two fini...
متن کاملQd(p)-FREE RANK TWO FINITE GROUPS ACT FREELY ON A HOMOTOPY PRODUCT OF TWO SPHERES
A classic result of Swan states that a finite group G acts freely on a finite homotopy sphere if and only if every abelian subgroup of G is cyclic. Following this result, Benson and Carlson conjectured that a finite group G acts freely on a finite complex with the homotopy type of n spheres if the rank of G is less than or equal to n. Recently, Adem and Smith have shown that every rank two fini...
متن کاملGroup Actions and Group Extensions
In this paper we study finite group extensions represented by special cohomology classes. As an application, we obtain some restrictions on finite groups which can act freely on a product of spheres or on a product of real projective spaces. In particular, we prove that if (Z/p)r acts freely on (S1)k , then r ≤ k.
متن کامل